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Lecture 15: Geometry & surfaces: depth & shape

Initialize

Off@General::spell1D;

SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,
Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø 81, 1<, ImageSize Ø SmallD;

SetOptions@DensityPlot, ColorFunction Ø "GrayTones", Frame Ø False,
AspectRatio Ø Automatic, Mesh Ø False, ImageSize Ø SmallD;



Outline

Last time

‡ Extrastriate cortex--overview

‡ Scenes from images, scene-based modeling of images

Today

‡ Geometry, shape and depth: Mainly representation & generative models

‡ Lambertian model

Surfaces, geometry & depth

Introduction
Recall two major tasks of vision: "Knowing what is where just by looking"--Marr's definition of vision. 

Today we introduce the problem of extracting geometrical information about the world. 

General issues: Between-object, viewer-object, within-object geometry.

Coarse vs. dense estimations of geometrical relations. 

Two basic classes of geometrical information for vision

‡ Scene geometry--Spatial layout, large-scale surface structure

Where are objects relative to the viewer? 

Where are they relative to each other? Relative to a frame? (e..g. ground plane)

‡ Object geometry--Surfaces & shape, small scale surface structure

How can we describe objects themselves in terms of their geometry--shape?

What is the relationship of features/parts of objects to each other? 

Extrinsic vs. intrinsic geometrical descriptions
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How can we describe objects themselves in terms of their geometry--shape?

What is the relationship of features/parts of objects to each other? 

Extrinsic vs. intrinsic geometrical descriptions

Scene geometry: Spatial layout
Where are objects? 

‡ Viewer-object relations: Absolute depth

Distance of objects or scene feature points from the observer. 

"Physiological cues": Binocular convergence--information about the distance between the eyes and the angle converged by 
the eyes. Crude, but constraining. 

Errors might be expected to be proportional to reciprocal distance. Closely related to accommodative requirements.

diopters (or  meter-angles) = 1/(meters) 

"Pictorial cue"--familiar size

Pattern of errors can depend on how human absolute depth is assessed (e.g. verbal estimates vs. walking) (Loomis et al., 
1992)

Important for reaching. (Marrotta and Goodale, 2001).

‡ Object-object relations: Relative depth

Distance between objects or object feature points. Important for scene layout, planning actions, navigation.

Processes include: Stereopsis (binocular parallax) and motion parallax (e.g. http://psych.hanover.edu/krantz/motionparal-
lax/motionparallax.html). 

Also information having to do with the "pictorial cues": 

occlusion (interposition), 

transparency, 

perspective, 

proximity luminance, 

focus blur, 

familiar size & "assumed common physical size", 

"height in picture plane", 

cast shadows, 

texture & texture gradients for large-scale depth & depth gradients.
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‡ Examples of pictorial information for depth

For some depth from shadow illusions, see: http://gandalf.psych.umn.edu/~kersten/kersten-lab/demos/shadows.html

And for interactions between motion parallax and transparency/occlusion see: http://gandalf.psych.umn.edu/users/kersten/k-
ersten-lab/demos/transparency.html

‡ The representation problem: How should distance be represented? 

Absolute units, relative units, or ordinal? Answers may depend on:

 1) type of cue--interposition vs. disparity

 2) task (e.g. reaching, planning, navigation, instantaneous heading, recognition...)

 3) requirements for cue integration--integration requires common representation

‡ More later

...over a dozen cues to depth. Later, we'll study theories of integration (e.g. stereo + cast shadows). Also theories of 
cooperativity (e.g. motion parallax <=> transparency).

Object geometry: Shape
Important for determining what an object is. Although object recognition can make use information of such as material or 
context, shape is particularly informative.

We'll put the problem of defining shape off for the moment. It isn't that it can't be done, but we'll see that, like depth, its 
definition is closely tied to what image information is available, what the shape information will be used for, and what 
needs to be discounted to get there. So let's look at some examples of image information for shape.
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‡ Contours & region information

1D "lines" vs. 2D "fields", object contours vs. region information. Here are some examples.

Contours and region processes support the inference of both 2D and 3D shape. Let’s look more closely at these.

‡ Cues to shape: Contour based

Contour based--contours at object boundaries (depth discontinuity) and at sharp object bends (orientation discontinuities, 
smooth self-occluding contours). 

The Kanizsa triangle below illustrates contours at apparent depth discontinuities. The illusion illustrates the effectiveness 
of contours. Cartoons illustrate the effectiveness of line-drawings.
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The contours below are interpreted as self-occluding contours, where the surface smoothly wraps out of view. Is the 
"worm" flat or round? Is the vertical rod flat or round?

http://journalofvision.org/3/4/4/article.aspx 

‡ Cues to shape: Region based

Region based: shading, texture gradients, disparity gradients & fields, motion parallax fields

‡ Example of shading & shape

‡ Example of texture and shape

...but the reasons why we see shape given a texture aren't always obvious:
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Are the square elements all the same size? http://www.ritsumei.ac.jp/~akitaoka/Bulge02.jpg

Later, we'll look at the interactions between contour and region information in the perception of shape.

‡ Local vs. global shape

If you pick a point on one of the above "croissants", it can be characterized in terms of its local surface orientation (a 
viewer-centered representation, which we discuss below) or its local curvature (elliptic, hyperbolic, cylindrical, which are 
measures intrinsic to the surface, independent of viewer coordinate system). 

But you can also characterize the whole shape, i.e. "croissant-like" or "banana-like". 

One can ask whether the visual system is sensitive to global properties or measures such as aspect ratio, compactness. 
Shape can also be described qualitatively, and complex objects built out of relational descriptions (e.g. Biederman, 1985). 
We go more into depth below.

Features and the shape representation itself can be sparse (coarse) or dense. Given a coarse set of cues, the human visual 
system interpolates shape between features, often with “phenomenal” smoothness -- i.e. your perceptual experience 
reflects an underlying process of surface interpolation. 
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The shading on the above croissants provides continuous, dense cues.

Local shape fields & dense estimation

‡ From dense depth to shape, normals & curvature

Below we will start with a mathematically simple representation of depth from the viewer: z = f(x,y), and show how to 
derive a simple dense shape measure in terms of the rate of change of depth from the viewer. This a viewer-centered depth 
representation. Later, we will discuss intrinsic object shape measures such as curvature.

An issue that is perceptually important and of theoretical interest is: How to go from a set of sparse measurements in a 
region to a dense field. This is a problem of surface interpolation. We'll see more of that later.

Local dense representations of surface regions

Shape-based generative modeling of images
We'll start with a discussion of dense local representations of shape and understand how shape changes influence image 
intensity changes.

There are two aspects to image formation. The first has to do with geometrical manipulations that describe how surface 
points project to image points (which we will study later via matrix transformations on homogeneous coordinates). The 
second aspect is the photometric determination of intensity at each image point from a scene description. In order to 
understand shape from shading, we need to understand the constraints implicit in the forward optics problem of  "shading 
from shape"--i.e. the generative model. Here we can benefit from research in attempts in computer graphics to obtain 
photorealism.

Image formation constraints can be obtained by understanding how material properties, shape, and illumination interact to 
form an image. This is part of the field of computer graphics.  The quest for physical realism in reasonable computing time 
is still a challenge in computer graphics (Greenberg, 1999; for eary history, see: Blinn, J. F., 1977; Cook, R., & Torrance, 
K.,  1982; and

http://www.cs.columbia.edu/~eitan/ for examples of current work on physical simulation). 

One of the earliest models is the Lambertian shading equation which describes how intensity is distributed for curved 
matte surfaces with constant reflectance (e.g. arbitrarily defined as 1):
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(1)L Hx, yL = EÔ ÿ NÔ Hx, yL

E(x,y) is a vector representing light source direction. If at infinity, it has just two degrees of freedom and is constant over 
the surface. If light source intensity is normalized, then the E vector is a unit vector. The above expression assumes a light 
source at infinity. Alternatively its vector length can be used to  indicate the strength of the illumination.

Surfaces can have varying reflectance, r(x,y)and then the shading equation becomes:

(2)L Hx, yL = r Hx, yL EÔ ÿ NÔ Hx, yL

‡ An example of a simple computer graphics lighting model--"matte" & "plastic" world

An elaboration of the lambertian model for shading, based in part on physics, and in part on heuristics and "beauty 
pageant" observation, describes image luminance in terms of ambient,  lambertian, and specular components:

(3)L = ra Ea + r EÔ ÿ NÔ + rs JRÔ ÿ LÔN
n

where the lower case r's are the reflectivities (0 means no reflectance of the illumination, and 1 means complete 
reflectance), and the unit vectors   E, N, and  L, point in the directions of the light source, surface normal, and viewpoint 
respectively. Ep and Ea, are  the strengths of the point source, and ambient illumination, respectively.   R points in the 

direction that a ray would go if the surface was a mirror, i.e. purely specular. E
Ô
ÿ N

Ô
 µ∝ cos(qi) and  R

Ô
ÿ N

Ô
 µ∝ cos(qr), where qi 

and qr are the angles of incidence and reflection, respectively. For a flat mirror surface, qi = qr.

The form for the specular term, JR
Ô
ÿ L

Ô
N
n

,  is due to Phong, who pointed out that  n could be used to control the degree of 

specularity. High values of n correspond to a perfect mirror surface, values between 1 and 200 are typically used to add 
some gloss to the rendering. Surfaces then look more plastic, or metallic. 

‡ Perception-based fudge factors

One can try to build in “effects” that enhance realism without explicit consideration of the physics. For example, 

where the R+K term is a "fudge" term, reflecting common experience (not physics) in which surfaces (of the same 
reflectance, and orientation) that are farther away from the viewer are dimmer. K is a constant, and R is the distance from 
the object to the viewpoint. This is a weak, but nevertheless useful constraint for vision. A closely related idea is 
"proximity luminance" cues in vision (see above, and also Dosher, B. A., Sperling, G., & Wurst, S. A., 1986). The assump-
tion is that one’s viewpoint is likely to be close to the light source direction than opposite it. 
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where the R+K term is a "fudge" term, reflecting common experience (not physics) in which surfaces (of the same 
reflectance, and orientation) that are farther away from the viewer are dimmer. K is a constant, and R is the distance from 
the object to the viewpoint. This is a weak, but nevertheless useful constraint for vision. A closely related idea is 
"proximity luminance" cues in vision (see above, and also Dosher, B. A., Sperling, G., & Wurst, S. A., 1986). The assump-
tion is that one’s viewpoint is likely to be close to the light source direction than opposite it. 

‡ Limitations

For more on rendering, including a physically correct phong-like model, see: Larson, G. W., & Shakespeare, R. (1998). 
(We’ll look more closely at physically correct photometric models later when we consider problems of material percep-
tion.)

Note that as is, there are severe limitations to the above image formation models. One of the major problems is  the 
absence of cast shadows. Physically based models become much more complicated when one has to take into account 
multiple reflections, for example through ray-tracing. (See Computer Graphics: Principles and Practice (3rd Edition); 
Fundamentals of Computer Graphics by Peter Shirley et al. and Visual Perception from a Computer Graphics Perspective 
by William Thompson, Roland Fleming, Sarah Creem-Regehr and Jeanine Kelly Stefanucci (Jun 2, 2011)). 

The above equation also does not take into account how light bounces between objects (mutual illumination or indirect 
lighting)--the ambient “fudge” term is the crude approximation to model the overall effect of mutual illumination.

Material properties can be much more complicated than Lambertian plus a Phong specular term. Illumination patterns can 
also be much more complicated, as illustrated everytime you look at a shiny object.

More on the complexities of the image formation model later.

‡ Preview of the shape-from-shading problem

Later we will study the "shape-from-shading" problem. If one represents shape in terms of a dense distribution of surface 
normals, then a simplified version of the formal problem is to estimate N(x,y) given data L(x,y) such that the following 
simplification of the above equations holds:

As it stands, this set of equations (one for each location x,y) is underconstrained or "ill-posed". Even if we knew the light 
source direction E, for every image intensity L, there are two numbers to estimate for N. Assuming the light source is a 
point at infinity simplifies things (same two numbers E for all surface points). Assuming surface smoothness and integrabil-
ity also constrains the solution. But more on this later.

Representing shape
A central issue in object perception is how the shape of an object is represented by the visual system. Shape may be 
represented in a variety of ways that depend on the visual task and the stages of processing in a given task. Questions 
about shape representation can be classified along several dimensions. Two central questions have to do with whether the 
representation is local or global, and whether the representation depends on viewpoint.

Global and local representations of shape.  A global representation of solid shape consists of a set of parameters or 
templates that describe a class of surfaces or ``parts". Several theories of object recognition assume that objects can be 
decomposed into elementary parts. These parts are drawn from a limited set of elementary shapes, such as generalized 
cylinders (Marr and Nishihara, 1978), geons (Biederman, 1987) or superquadrics (Pentland, 1990).  Shapes can be charac-
terized by their skeletons (e.g. Wilder, J., Feldman, J., & Singh, M., 2011). 

Some global representations have the property that a change of one parameter which describes a part will affect the whole 
shape.  An example of this are spline representations. 
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Global and local representations of shape.  A global representation of solid shape consists of a set of parameters or 
templates that describe a class of surfaces or ``parts". Several theories of object recognition assume that objects can be 
decomposed into elementary parts. These parts are drawn from a limited set of elementary shapes, such as generalized 
cylinders (Marr and Nishihara, 1978), geons (Biederman, 1987) or superquadrics (Pentland, 1990).  Shapes can be charac-
terized by their skeletons (e.g. Wilder, J., Feldman, J., & Singh, M., 2011). 

Some global representations have the property that a change of one parameter which describes a part will affect the whole 
shape.  An example of this are spline representations. 

Manipulate@
Graphics3D@Tube@BezierCurve@880, 0, 0<, 81, 1, 1<, 82, -1, s<, 83, 0, 2<<D,

0.2D, ImageSize Ø SmallD, 88s, 1.0<, .1, 2.0<D

s

In comparison, a local representation is a dense characterization of shape, such that a change of a parameter at one spatial 
location will not affect the shape at another location. A surface normal vector at each surface location is an example of a 
dense representation.

Viewpoint dependency in shape representations. A second major question is whether the shape representation depends on 
viewpoint. This debate has arisen in the context of models of object recognition  (Tarr & Bülthoff, 1995). Local viewpoint 
dependent descriptors such as slant and tilt have an early history (Todd & Mingolla, 1983; Mingolla & Todd, 1986; see 
below). But view-dependent descriptors have disadvantages for some tasks. One problem with slant and tilt is that the 
local slant of an oriented plane varies with viewpoint. So we have a discrepancy between apparent global flatness and the 
local variation in slant (Mamassian, 1995).  For part-based object recognition, it would seem best to do part extraction 
using local view-independent descriptors. It is also reasonable that view-independent shape descriptors could support other 
types of visual processes. For instance, the manual prehension of an object requires one to locate stable grasp points on the 
surface, a task which only makes sense in an object-centered frame of reference.  Nevertheless, the visual information is of 
course firstly described in a viewer-centered frame of reference, and the fundamental issue then becomes the tranformation 
of viewpoint dependent into viewpoint independent representation (Andersen, 1987). One local, intrinsic representation of 
solid shape describes the second order depth variation of the surface (Besl and Jain, 1986), or equivalently, the first order 
orientation variation (Rogers and Cagenello, 1989).  For more on shape representations, see Koenderink (1990).

Compositions. When we discuss the problem of object recognition later in the course, we’ll look at ways of describing 
objects in terms of “compositions”, in which one  builds a global representation from “resuable” features and parts. Such 
descriptions have a number of advantages including the ability to change a part description without affecting the whole, 
and when incorporated into a hierarchical model, the ability to represent a rich set of a semantically meaningful variations. 
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Gradient space & surface normals
Let’s look more closely at local, dense, viewpoint dependent representations. We begin with  surface normal representa-
tion that we saw a bove: N(x,y). 

Imagine a small planar surface patch. One way of representing shape locally and with respect to the viewpoint of the 
observer, is to use gradient space:

Let ϕ(x,y,z)=f(x,y)-z  Then,

is a normal vector to the surface at (x,y,f(x,y))  :

Gradient space is defined by the mapping of (p,q,-1)-->(p,q), i.e. the orthographic projection. If we normalize to unit 
length, we get: N(x,y) = ( p

p2+q2+1
, q

p2+q2+1
).

Slant and tilt
Shape can also be described by slant and tilt.  Again, imagine a small planar surface patch being viewed along the z-axis. 

(Note: Sign convention can differ from one study to the next, e.g. whether the viewer is looking from a point on +z or -z.)

Slant and tilt measures are used in perceptual studies of both local dense estimation, and global near-planar surface 
attributes, e.g. for large-scale layout.

Let N be the (un-normalized) surface normal expressed in terms of p and q:
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The slant is the inclination of the suface relative to the viewer and is related to p and q by:

A slant of zero means that the surface is "fronto-parallel". 

The direction of steepest descent away from the viewer is the tilt:

Note: Sqrt[q^2+p^2] is the rate of change of z in the direction of maximum change (steepest descent).

How to choose a representation?
How do we know what is the best representation to use? Slant and tilt seem to be important from a perceptual point of 
view. 

But one reason gradient space is useful is that it is related to relative depth in a straight forward way:

We can get back to distance by integrating:

gives the relative distance, and a constant is lost in the process.

For examples of perceptual studies of local shape representations see: Koenderink, 1990;  and also Mamassian & Kersten 
1996, Mamassian, Knill & Kersten (1996).
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gives the relative distance, and a constant is lost in the process.

For examples of perceptual studies of local shape representations see: Koenderink, 1990;  and also Mamassian & Kersten 
1996, Mamassian, Knill & Kersten (1996).

More on the Lambertian model: Using Mathematica to go from depth to 
normals to image intensities

This section gives you some practice using the Lambertian scene-based generative model.

Range data defines surface list  

‡ Range data to define rface list -- BIG 64x64 file. 

(Originally from: http://sampl.eng.ohio-state.edu/)

Intensity in a DensityPlot is proportional to the z (depth) from the camera

size = Dimensions@rfaceD@@1DD; hsize = size ê 2;
ArrayPlot@rfaceD

Fit continuous 3D function to range surface list

‡ Spline-fit the first surface face to define a continuous function

crface = ListInterpolation@Transpose@rfaceDD;
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Plot 3D surface

g2 = Plot3D@crface@x, yD, 8x, 1, size<, 8y, 1, size<, PlotPoints Ø 32,
Lighting Ø "Neutral", PlotRange Ø 80, 255<, Mesh Ø True,
AxesLabel Ø 8"x", "y", "z"<, ViewPoint Ø 81, -1, 3<, AspectRatio Ø 1,
PlotRange Ø 881, size<, 81, size<, 80, 255<<, ImageSize Ø SmallD

Calculate surface normals of  surface

Clear@x, yD

nx@x_, y_D := Evaluate@D@crface@x, yD, xDD;
ny@x_, y_D := Evaluate@D@crface@x, yD, yDD;

nx[x,y] is  ¶∂z
¶∂x

, and similarly for ny. The rate of change of depth range is greatest as the face slopes away from the view-

point, and as we saw for intensity, we can also make a plot of the magnitude of the gradient:
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GraphicsRow@
8VectorPlot@-8nx@x, yD, ny@x, yD<, 8x, 1, size<, 8y, 1, size<,

VectorPoints Ø 20, VectorScale Ø .2, ImageSize Ø SmallD,
DensityPlot@nx@x, yD, 8x, 1, size<, 8y, 1, size<D,
DensityPlot@Sqrt@nx@x, yD^2 + ny@x, yD^2D, 8x, 1, size<, 8y, 1, size<D<D

Lambertian rendering: specification for normals, light, reflectance 

‡ Unit surface normals

Normalize the surface normal vectors to unit length:

normface@x_, y_D := -8nx@x, yD, ny@x, yD, 1< ê

Sqrt@nx@x, yD^2 + ny@x, yD^2 + 1D;

‡ Point light source direction

s is a vector specifying the direction of the light source. The length can be used as to represent intensity. We normalize it.

s = 8-100, 100, 100<; s = N@s ê Sqrt@s.sDD

8-0.57735, 0.57735, 0.57735<
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‡ Reflectance

The surface is modeled as having constant reflectivity of 1--i.e. "white".

a@x_, y_D := 1.0;

‡ Lambertian rendering model for first surface

imageface@x_, y_D := a@x, yD * normface@x, yD.s;

Render  face surface

DensityPlot@imageface@x, yD, 8x, 1, size<, 8y, 1, size<, PlotPoints Ø 32D

Next time

‡ Shape from X, shape from shading
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